[1] 宋文琦, 吴龙, 黎尧. 小样本条件下的带钢表面缺陷检测
[J]. 计算机系统应用, 2024, 33(5): 85-93.
Song Wenqi, Wu Long, Li Yao. Surface Defect Detection of Steel
Strips under Low-Sample Conditions[J]. Computer Systems &
Applications, 2024, 33(5): 85-93.
[2] Khanam R, Hussain M, Hill R, et al. A Comprehensive
Review of Convolutional Neural Networks for Defect Detection in
Industrial Applications[J]. IEEE Access, 2024, 12: 94250-94295.
[3] Li F,Xi Q. DefectNet: Toward Fast and Effective Defect
Detection[J]. IEEE Transactions on Instrumentation and
Measurement, 2021, 70: 1-9.
[4] 杨春龙, 吕东澔, 张勇, 等. 融合自适应下采样的带钢表
面缺陷检测算法[J]. 钢铁研究学报, 2024, 36(6): 806-816.
Yang Chunlong, Lv Dongzheng, Zhang Yong, et al. Defect
Detection Algorithm for Steel Strip Surface with Adaptive
Downsampling Integration[J]. Acta Metallurgica Sinica, 2024,
36(6): 806-816.
[5] Liu Y, Balta C, Liu J. A Light-Weight Deep-Learning Model
with Multi-Scale Features for Steel Surface Defect Classification[J].
Materials, 2020, 13(20): 4629.
[6] Li Q, Yang Z, Sun H. Fine-grained Classification of Rail
Fastener Images Based on B-CNN[C]//2021 IEEE 5th Information
Technology,Networking,Electronic and Automation Control
Conference (ITNEC). Xi’an, China: IEEE, 2021: 1018-1024.
[7] Xu J, Le H, Huang M, et al. Variational Feature
Disentangling for Fine-Grained Few-Shot Classification[C]//2021
IEEE/CVF International Conference on Computer Vision (ICCV).
Montreal, QC, Canada: IEEE, 2021: 8792-8801.
[8] oret P, Kleiner A, Mobahi H, et al. Sharpness-aware
minimization for efficiently improving generalization[J]. arXiv
preprint arXiv:2010.01412, 2020.
[9] 余蓉, 熊邦书, 欧巧凤. 基于改进 LeNet-5 优化算法的轴
承故障诊断研究[J]. 南昌航空大学学报(自然科学版), 2023,
37(04): 82-87+114.
Yu Rong, Xiong Bangshu, Ou Qiaofeng. Research on Bearing
Fault Diagnosis Based on the Improved LeNet-5 Optimization
Algorithm[J]. Journal of Nanchang University (Natural Science
Edition), 2023, 37(04): 82-87+114.
[10] Zeng N, Wu P, Wang Z, et al. A Small-Sized Object
Detection Oriented Multi-Scale Feature Fusion Approach With
Application to Defect Detection[J]. IEEE Transactions on
Instrumentation and Measurement, 2022, 71: 1-14.
[11] 谢政峰, 王玲, 尹湘云, 等. 基于卷积神经网络的钣金件
表面缺陷分类识别方法[J]. 计算机测量与控制, 2020, 28(6):
187-190+196.
Xie Zhengfeng, Wang Ling, Yin Xiangyun, et al. Surface Defect
Classification and Identification of Metal Parts Based on
Convolutional Neural Networks[J]. Computer Measurement &
Control, 2020, 28(6): 187-190+196.
[12] Liu T, Ye W. A semi-supervised learning method for surface
defect classification of magnetic tiles[J]. Machine Vision and
Applications, 2022, 33(2): 35.
[13] 胡坤, 吴国庆, 胡祖辉, 等. 基于改进的 VGG16 网络金属
表面缺陷图像分类研究[J]. 计算机应用与软件, 2024(6):
175-180.
Hu Kun, Wu Guoqing, Hu Zuhui, et al. Research on Metal Surface
Defect Image Classification Based on Improved VGG16
Network[J]. Computer Applications and Software, 2024(6):
175-180.
[14] 罗晶, 周威, 张昱中, 等 l. 基于对抗性弱化的多阶段钢材
表面缺陷分类算法[J]. 组合机床与自动化加工技术, 2024(7):
170-176+181.
Luo Jing, Zhou Wei, Zhang Yuzhong, et al. Multi-stage Steel
Surface Defect Classification Algorithm Based on Adversarial
Weakness[J]. Machine Tool & Automation Technology, 2024(7):
170-176+181.
[15] 王亚,甘青松,沈琦,等.基于动态联合加权的带钢表面缺陷
分类方法[J/OL].计算机工程,1-11[2025-01-12].
https://doi.org/10.19678/j.issn.1000-3428.0068831.
Wang Ya, Gan Qingsong, Shen Qi, et al. A Dynamic Joint
Weighting Based Method for Steel Strip Surface Defect
Classification[J/OL]. Computer Engineering, 1-11[2025-01-12].
https://doi.org/10.19678/j.issn.1000-3428.0068831.
[16] Kingma D P. Auto-encoding variational bayes[J]. arXiv
preprint arXiv:1312.6114, 2013.
[17] Gonzalez-Garcia A, Van De Weijer J, Bengio Y.
Image-to-image translation for cross-domain disentanglement[J].
Advances in neural information processing systems, 2018, 31.
[18] Gidaris S, Singh P, Komodakis N. Unsupervised
representation learning by predicting image rotations[J]. arXiv
preprint arXiv:1803.07728, 2018.
[19] Feng Z, Xu C, Tao D. Self-Supervised Representation
Learning by Rotation Feature Decoupling[C]//2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
Long Beach, CA, USA: IEEE, 2019: 10356-10366.
[20] Zhang Y, He H, Zhu J, et al. On the duality between
sharpness-aware minimization and adversarial training[J]. arXiv
preprint arXiv:2402.15152, 2024.
[21] Foret P, Kleiner A, Mobahi H, et al. Sharpness-Aware
Minimization for Efficiently Improving Generalization[M]. arXiv,
2021.
[22] Chen R T, Li X, Grosse R B, et al. Isolating sources of
disentanglement in variational autoencoders[J]. Advances in neural
information processing systems, 2018, 31.
[23] Song K, Yan Y. A noise robust method based on completed
local binary patterns for hot-rolled steel strip surface defects[J].
Applied Surface Science, 2013, 285: 858-864.
[24] Lv X, Duan F, Jiang J, et al. Deep Metallic Surface Defect
Detection: The New Benchmark and Detection Network[J].
Sensors, 2020, 20(6): 1562.
[25] 单东日, 童灿, 乃学尚, 等. 基于小波和灰度共生矩阵的
带钢表面缺陷识别[J]. 制造技术与机床, 2020(2): 120-123.
Shan Dongri, Tong Can, Nai Xueshang, et al. Identification of
Steel Strip Surface Defects Based on Wavelet Transform and
Gray-Level Co-occurrence Matrix[J]. Manufacturing Technology
& Machine Tool, 2020(2): 120-123.
[26] 陆雅诺, 陈炳才, 陈德刚, et al. 一种基于注意力模型的带
钢表面缺陷识别算法[J]. 激光与光电子学进展, 2021, 58(14):
242-250.
Lu Yanuo, Chen Bingcai, Chen Degang, et al. A Steel Strip Surface
Defect Recognition Algorithm Based on Attention Model[J]. Laser
& Optoelectronics Progress, 2021, 58(14): 242-250.
|